BEACH NOURISHMENT PUBLIC FORUM

TOWN OF SOUTHERN SHORES NORTH CAROLINA

17 January 2017

Essential Data Collection
Monitoring & Design Elements for
Beach Maintenance & Planning

Tim Kana www.coastalscience.com

CSE's Beach Management Approach

- Determine The Causes and Rates of Erosion
- Find The Nearest Source of Sand
- Move It The Cheapest Way
- Cover Your Tracks

Measure - Measure - Measure

Beach Profile - The Shore Zone That Absorbs Breaking Waves

Why does the underwater zone matter?

Equilibrium Profiles

Profile Shape and Beach Width Will Change Frequently. But If the Profile Volume Remains Constant, The Beach Is In Equilibrium

50 Year Erosion Rate Feet Per Year Atlantic Ocean NAGS HEAD Roanoke Sound Source: NCDENR

Beach Nourishment -

The addition of sand from a non-littoral source to replace losses due to erosion

Nags Head Project - 2011

Defining Native Beach Sand Quality

Sand - Pebbles - Shells!

Offshore Borings
To Confirm Sand Quality

Visible Beach

Inner Surf Zone

Nags Head Project Facts

The largest locally funded beach nourishment accomplished to date in the United States.

- 4.6 million cubic yards
- Along 10 miles
- Over 100 borings to confirm offshore borrow source
- Combination of 3 hopper dredges and 1 cutterhead dredge
- Construction cost ~\$31 million Great Lakes Dredge & Dock Co.
- 5 years of environmental reviews & permitting
- 5 months of <u>summer</u>
 construction between 24 May and
 27 Oct 2011
- Hurricane IRENE impacted when the project 85% completed

Beach Condition Analysis - "The Littoral Sand Box"

Lens 1 - Foredune - From the ~crest of dune to +6 ft NAVD*

Lens 2 - Beach - Between +6 ft and -6 ft NAVD

Lens 3 - Underwater - Between -6 ft and -19 ft NAVD

*NAVD-North American Vertical Datum of 1988 = ~mean sea level

Nags Head Cumulative Beach Volume Changes (Relative To November 2010 - Pre-Project)

Net Losses November 2011 through June 2016 ~10%

Nags Head Average* Profile Evolution

- Higher & Wider Foredune
- Greater Underwater Volume
 - Similar Dry Beach Width

^{*}Calculated from the +10 ft NAVD contour (n= 104)

Nags Head

Natural Dune Growth

After 4 years – Over twice the volume that FEMA typically approves for emergency repairs after storms

Critically Eroding Areas:

18 Feb 2013

- Were not damaged during IRENE or SANDY
- There was no overwash into roads
- 3) Nourishment losses were <10% of the volume placed

Rodanthe, Waves & Salvo Relative Beach Conditions

CSE's Beach Management Approach

- Determine The Causes and Rates of Erosion
- Find The Nearest Source of Sand
- Move It The Cheapest Way
- •Cover Your Tracks Nags Head Spent >\$1 million for Environmental Protection and Monitoring in Accordance with Special Conditions of the Permit

Site-specific measurements of the active littoral zone are the only way communities can truly know the condition of their beach.

